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1 Executive Summary

1.1

What is C6P /IslandAccord/Convro?

C6P (Convro 6 Protocol) is an end-to-end encrypted direct messaging protocol designed for device-
to-device secure communication. The protocol consists of:

IslandAccord v1: An authenticated prekey handshake using 3DH + optional 4DH with
OTP

DM Ratchet: A symmetric double-ratchet providing per-message forward secrecy
Device-based identities: Ed25519 signatures and X25519 Diffie-Hellman key exchange

C6P is built on three foundational principles:

1.

1.2
This

1.3
This

1.4

Server is not trusted for secrecy: The server routes messages and manages state but
never derives or learns session keys or message content

. Deterministic crypto by design: Nonces are derived deterministically from per-message key

material, enabling reproducible behavior and eliminating randomness-related vulnerabilities
Fail-closed as invariant: Any validation failure, decryption failure, or state inconsistency
causes immediate abort with no partial state updates

Scope of This Threat Analysis

document analyzes threats to:

Session establishment (handshake replay, MITM, OTP exhaustion)

Message transport security (replay, reordering, counter manipulation)
Server state machine integrity (invalid transitions, concurrency races)
Cryptographic correctness (key derivation, AEAD, nonce uniqueness)

Explicitly Out of Scope
threat model does not address:

Endpoint compromise (malicious OS, malware, keyloggers)

Physical device theft with unlocked screen

Social engineering attacks on users

Denial-of-service attacks (covered separately in operational security)

Metadata analysis beyond protocol-level binding

Quantum adversaries (acknowledged limitation; post-quantum migration planned for v2)

Key Security Properties

C6P guarantees the following within its defined threat model:

Confidentiality: Only intended recipients can decrypt messages

Authentication: Peers verify each other via Ed25519 signatures

Replay protection: Both handshake and messages protected against replay attacks

State machine integrity: Server enforces strict state transitions with fail-closed validation
OTP single-use guarantee: One-time prekeys consumed exactly once via atomic state
transitions

Deterministic reproducibility: All cryptographic operations are deterministic and testable



2 System Overview & Trust Boundaries

2.1 2.1 Actors

Initiator (A) The device creating a DM session. Possesses long-term identity keys (IK_sig, IK_dh)
and generates a fresh ephemeral key (A_EK) for each session.

Responder (B) The device accepting a DM session. Possesses long-term identity keys and rotating
prekeys (SPK with 30-day rotation, OTP single-use).

Server (S) Message router and state authority. Stores offers/accepts as opaque blobs, enforces
state machine transitions, manages OTP reservation lifecycle. Never derives cryptographic
secrets.

Network Attacker Passive observer or active man-in-the-middle on transport layer. Can observe
encrypted envelopes, metadata (session IDs, timestamps, sizes), and network topology.

2.2 2.2 Trust Boundaries

Client-Server Boundary - Server is authoritative for: routing, state machine enforcement, OTP
scarcity management - Server is not trusted for: secrecy, cryptographic validation (signatures, KC
tags) - Clients validate all cryptographic proofs locally; server failures are fail-closed

Client-Network Boundary - All message payloads encrypted end-to-end (ChaCha20-Poly1305
AEAD) - Metadata visible: session ID, message counter, timestamp, envelope size - Transport
security (TLS) provides confidentiality against passive network observers but does not prevent
malicious server from observing metadata

Internal Server Boundary (Database) - Session state (dm_sessions): sessionld, device IDs,
state enum, offer/accept blobs (immutable), expiry timestamps - OTP state (prekeys_otp): otpld,
status (AVAILABLE/RESERVED /PENDING__CONSUMPTION/CONSUMED), reservation TTL
- State transitions are atomic; partial writes cause transaction rollback

2.3 2.3 Protected Assets

Session Secrecy Root key, chain keys, per-message keys must remain secret to both endpoints.
Compromise reveals future messages within that session but not past messages (forward secrecy).

Forward Secrecy Per-message keys derived from chain key, which advances after each message.
Compromise of current state does not reveal past messages.

OTP Scarcity One-time prekeys provide enhanced forward secrecy for session establishment.
Server must guarantee each OTP consumed exactly once.

Session State Correctness State machine integrity prevents: replayed offers, double accepts,
invalid transitions. Server enforces uniqueness of (initiatorDeviceld, responderDeviceld,
sessionId) tuples.

Replay Resistance Consumed counter sets prevent duplicate message acceptance. Skip-window
(2048 messages) bounds out-of-order acceptance without weakening replay guarantees.



3 Attacker Model

3.1 3.1 Attacker Capabilities

Passive Observer (Network) - Observe all encrypted traffic (ciphertext, AAD, session IDs,
timestamps) - Record traffic for later analysis (harvest-now-decrypt-later) - Perform traffic analysis
(timing, frequency, message sizes)

Active Man-in-the-Middle (Network) - Intercept, modify, replay, drop, or delay messages -
Inject fake messages - Attempt downgrade attacks (protocol version, crypto suite) - Cannot break
cryptographic primitives

Malicious Server - Control prekey bundle delivery (serve stale/incorrect SPKs) - Deny message
delivery or delay arbitrarily - Attempt to cause state machine violations - Reorder messages within
transport constraints - Observe all metadata (session IDs, device IDs, timestamps, message counts)
- Cannot decrypt message content (lacks DH private keys)

Malicious Peer - Participate in protocol with intent to cause failures - Attempt replay attacks
with previously valid messages - Send malformed envelopes to trigger parsing/validation errors -
Cannot impersonate other users without their private keys

Compromised Device (Post-Handshake) - Extract all keys stored on compromised device -
Decrypt future messages sent to/from that device - Cannot decrypt past messages (forward secrecy
protects if keys already deleted) - Cannot compromise other devices in the same user account

3.2 3.2 What Attackers CANNOT Do

Break Cryptographic Primitives - Cannot find X25519 or Ed25519 private keys from public
keys - Cannot forge Ed25519 signatures without private key - Cannot break ChaCha20-Poly1305
AEAD encryption - Cannot find HKDF collisions or reverse HKDF-Expand

Extract Keys from Uncompromised Device - Keys stored in platform secure storage (i0S
Keychain with kSecAttrAccessibleWhenUnlockedThisDeviceOnly, Android KeyStore with hard-
ware backing) - Biometric/passcode protection required for key access - Memory zeroization applied
after cryptographic operations

Forge Cryptographic Proofs - Cannot generate valid SPK signatures without responder’s IK_sig
private key - Cannot generate valid offer signatures without initiator’s IK_sig private key - Cannot
compute correct key confirmation tags (KC1/KC2) without completing DH exchange



4 Security Goals

C6P achieves the following security properties:

1.

Confidentiality of DM content: Messages encrypted with per-message AEAD keys derived
from session chain keys; server and network observers cannot decrypt

. Authentication of peers: Mutual authentication via Ed25519 signatures (SPK signature,

offer signature) and bidirectional key confirmation (KC1/KC2)

. Replay protection (handshake 4 messages): Server enforces uniqueness of

(initiatorDeviceld, responderDeviceld, sessionId) tuple; message layer enforces
consumed counter sets per stream

. State machine integrity: Server validates all transitions; clients validate cryptographic

proofs; fail-closed design prevents partial state updates

. OTP single-use guarantee: Atomic state transitions (RESERVED — PEND-

ING_CONSUMPTION — CONSUMED) with database constraints prevent OTP

reuse

Deterministic reproducibility: All key derivations, nonce generation, and AAD construc-
tion are deterministic; enables comprehensive test vector validation across implementations



5 Threat Enumeration Methodology

This threat model uses a STRIDE-inspired approach adapted for end-to-end encrypted protocols:

e Spoofing: Identity verification via signatures, key confirmation

e« Tampering: AEAD tags, transcript binding, immutable server blobs

o Repudiation: Not a goal (signatures provide non-repudiation; deniability deferred to future
version)

e Information Disclosure: Confidentiality via E2EE; metadata minimization as best-effort

o Denial of Service: Partially addressed (rate limits, TTLs, bounded skip-window); full DoS
out of scope

o Elevation of Privilege: Server cannot derive secrets; strict role enforcement

Threats are grouped by protocol phase:

» Handshake phase (open/accept): Offer replay, OTP exhaustion, MITM, cross-device attacks
e Server state machine: Invalid transitions, concurrency races, terminal state violations

e Message transport: Replay, counter manipulation, reordering

o Replay/concurrency: Duplicate detection, skip-window enforcement, atomic persistence

Each threat includes:

o Attacker type and goal

o Attack path (step-by-step)

o Affected protocol phase

e Specific mitigation from protocol spec (with section references)
e Residual risk assessment

o Current status (prevented/detected/out-of-scope)



6 Threat Scenarios

6.1 Threat 1: Replayed Handshake Offer

Attacker: Network or Malicious Server Goal: Cause initiator to believe multiple sessions are
established or trigger duplicate processing

Attack Path:

1. Attacker captures valid offer from initiator A to responder B
2. Attacker replays offer to server or directly to responder
3. Attempt to cause server to create duplicate session or responder to process offer twice

Affected Phase: Handshake (open)
Mitigation in Convro:

e Server enforces unique constraint on (initiatorDeviceld, responderDeviceld,
sessionId) tuple (§4.2 island-accord-state-machine.md)

e Server implements idempotency: duplicate offer with matching blob returns existing session
state; differing blob rejected with C6P.HANDSHAKE .REPLAYED_OFFER (§6.1 island-accord-state-
machine.md)

 Server stores offerBlob as immutable after first write (§4.3 island-accord-state-machine.md)

Residual Risk: None — replay prevented by database uniqueness constraint and idempotent
server behavior

Status: Prevented

6.2 Threat 2: Modified Offer Blob

Attacker: Network MITM or Malicious Server Goal: Alter offer contents to change session
parameters or inject attacker keys

Attack Path:

1. Attacker intercepts offer from A to B
2. Attacker modifies fields: ephemeralDhPub, transcriptHash, kcl, or offerSignature
3. Server stores modified offer; responder receives tampered blob

Affected Phase: Handshake (open/accept)
Mitigation in Convro:

o Offer signature binds transcriptHash and all session parameters (§8.2 island-accord-
crypto.md: signature over SHA-256 of label + transcript__hash + version + suite + sessionld
+ devicelds)

o Responder verifies Ed25519 signature against initiator’s IK_sig_pub (§8.3 island-accord-
crypto.md)

o Responder independently recomputes transcript hash from offer fields and compares (§6.3
island-accord-crypto.md)

e Any mismatch causes immediate abort with C6P.HANDSHAKE. INITIATOR_SIGNATURE_INVALID
or C6P.HANDSHAKE. TRANSCRIPT_MISMATCH



Residual Risk: None — cryptographic binding prevents tampering; server cannot forge valid
signatures

Status: Prevented

6.3 Threat 3: Sessionld Collision Attempt

Attacker: Malicious Peer or Malicious Server Goal: Force two different sessions to share the same
sessionld, potentially enabling cross-session attacks

Attack Path:

1. Attacker generates offer with sessionld matching existing session between A and B
2. Attacker submits to server for storage
3. Attempt to cause state confusion or cross-session message delivery

Affected Phase: Handshake (open)
Mitigation in Convro:

e Server enforces UNIQUE(initiatorDeviceld, responderDeviceld, sessionId) database
constraint (§9.1 island-accord-state-machine.md)

o Sessionld is 8 bytes (64 bits), generated randomly by initiator from CSPRNG

e Collision probability negligible: 2764 space, birthday bound at ~2"32 sessions between same
device pair

o Server rejects duplicate tuple with C6P.HANDSHAKE.STATE_VIOLATION (§6.1 island-accord-
state-machine.md)

Residual Risk: None — database uniqueness constraint enforced atomically

Status: Prevented

6.4 Threat 4: Accept Replay with Modified kc2

Attacker: Network MITM or Malicious Server Goal: Replay accept with incorrect key confirmation
to cause initiator to activate session with wrong keys

Attack Path:

1. Responder sends valid accept with kc2
2. Attacker captures accept and modifies kc2 value
3. Server stores modified accept; initiator receives tampered blob

Affected Phase: Handshake (accept)
Mitigation in Convro:

 Server stores acceptBlob as immutable after first write (§4.3 island-accord-state-machine.md)

e Accept idempotency: if session already ACTIVE and stored kc2 matches provided kc2, return
OK; if ke2 differs, reject with C6P.HANDSHAKE.STATE_VIOLATION (§6.2 island-accord-state-
machine.md)



o Initiator computes expected kc2 = HMAC-SHA256 (kc_key, kc_payload || "RESP") and
compares byte-for-byte (§9.2 island-accord-crypto.md)

e Mismatch causes abort with C6P.HANDSHAKE.KEY_CONFIRMATION_FAILED; session remains
PENDING_ _HANDSHAKE locally

Residual Risk: None — key confirmation cryptographically binds both parties to derived keys

Status: Prevented

6.5 Threat 5: Cross-Device Accept Attempt

Attacker: Malicious Peer Goal: Accept an offer intended for device Bl using credentials from
device B2 (same user, different device)

Attack Path:

1. Offer sent to responder device Bl
2. Attacker (controlling device B2 of same user) fetches offer via API or database access
3. Attacker attempts to generate accept using B2’s private keys

Affected Phase: Handshake (accept)
Mitigation in Convro:

o Server validates responderDeviceld in accept matches responderDeviceld in stored offer
(§3.2 precondition 2, island-accord-state-machine.md)

e Reject with C6P.HANDSHAKE.DEVICE_BINDING_MISMATCH if mismatch

o Offer transcript binds B_deviceId (§6.2 field 7, island-accord-crypto.md)

o Accept requires loading SPK/OTP private keys for exact device referenced in offer (§10.2
responder checklist, island-accord-crypto.md)

o Transcript recomputation will fail if different device keys used (§6.3 island-accord-crypto.md)

Residual Risk: None — device binding enforced at both server and crypto layers

Status: Prevented

6.6 Threat 6: OTP Reuse Attempt

Attacker: Malicious Initiator or Malicious Server Goal: Use the same OTP for multiple session
establishments, weakening forward secrecy

Attack Path:

1. Initiator A1 fetches bundle containing OTP

2. Server reserves OTP (status: RESERVED)

3. Al calls open() with otpld, server moves OTP to PENDING__CONSUMPTION

4. Attacker A2 attempts to call open() with same otpld before Al’s accept completes

Affected Phase: Handshake (open)

Mitigation in Convro:

10



o Server OTP lifecycle enforces single-use via atomic state transitions (§5 island-accord-state-
machine.md)

e Once OTP moved to PENDING__CONSUMPTION, it cannot be returned by bundle fetch to
another initiator (§4.4 invariant, island-accord-state-machine.md)

o Second open() attempt with same otpld fails: OTP status no longer RESERVED — reject
with C6P.HANDSHAKE.OTP_MISSING or C6P.KEYS.KEY_NOT_FOUND (§3.1 precondition 6, island-
accord-state-machine.md)

o OTP linked to session via linkedSessionDbId in same transaction as open() (§5.3 island-
accord-state-machine.md)

Residual Risk: None — atomic state transitions and database constraints prevent reuse

Status: Prevented

6.7 Threat 7: OTP Race Between Initiators

Attacker: Multiple Malicious Initiators Goal: Two initiators fetch bundle simultaneously and
both receive the same OTP

Attack Path:

1. Initiators Al and A2 call GET /v1/prekeys/bundle simultaneously for responder B
2. Server selects same OTP for both requests before reservation commit

3. Both initiators receive identical otpld and otpPub

4. Both attempt to call open() with same OTP

Affected Phase: Prekey fetch + handshake (open)
Mitigation in Convro:

e Bundle fetch atomically reserves OTP: SELECT one AVAILABLE OTP + UPDATE status
to RESERVED in single transaction (§5.2 island-accord-state-machine.md)

« Database isolation (READ COMMITTED or SERIALIZABLE) ensures only one transaction
sees OTP as AVAILABLE

o Second concurrent fetch either: (a) receives different OTP, or (b) receives bundle with no
OTP if pool exhausted

o OTP binding at open() time validates status is RESERVED and not expired (§5.3 island-
accord-state-machine.md)

Residual Risk: Limited — race condition mitigated by atomic reservation; worst case one initiator
fails at open() (acceptable)

Status: Prevented

6.8 Threat 8: OTP Replay After Expiration

Attacker: Malicious Initiator or Network Goal: Reuse an OTP that was previously reserved but
expired without being consumed

Attack Path:

11



1. Initiator fetches bundle with OTP; server reserves OTP (status: RESERVED, expiresAt =
now + 10min)

2. Initiator never calls open(); reservation expires

3. Server cleanup job moves OTP to EXPIRED status (§5.5 island-accord-state-machine.md)

4. Attacker attempts to call open() referencing expired otpld

Affected Phase: Handshake (open)
Mitigation in Convro:

o Server validates OTP state at open() time: status must be RESERVED and now < expiresAt
(§3.1 precondition 6, island-accord-state-machine.md)

e Expired OTP fails validation — reject with C6P.HANDSHAKE.OTP_MISSING

o Recommendation: never reuse OTP IDs even after expiry; refill by minting new rows (§5.5
island-accord-state-machine.md)

Residual Risk: None — expired OTPs rejected at open()

Status: Prevented

6.9 Threat 9: OTP Prefetch Hoarding

Attacker: Malicious Initiator Goal: Reserve all available OTPs for a responder without consuming
them, causing DoS for legitimate initiators

Attack Path:

1. Attacker calls GET /v1/prekeys/bundle repeatedly for target responder

2. Server reserves OTPs (status: RESERVED) with 10-minute TTL

3. Attacker never calls open(); OTPs locked during reservation window

4. Legitimate initiators receive bundles with no OTP — reduced forward secrecy

Affected Phase: Prekey fetch
Mitigation in Convro:

o OTP reservation TTL limited to 10 minutes (§7 island-accord-state-machine.md:
OTP_RESERVATION_TTL)

o Expired reservations cleaned up by scheduled job (§5.5 island-accord-state-machine.md)

o Server-side rate limiting on /fetch-bundle per initiator device (§7 island-accord-state-
machine.md: recommended OPEN_RATE_LIMIT = 10/min)

o OTP pool replenishment strategy: responder uploads new OTPs periodically (§4.5.2 threat-
model-v1l.md)

Residual Risk: Limited — short-term OTP exhaustion possible; mitigated by TTL cleanup and
rate limits; full DoS prevention out of protocol scope

Status: Partially Mitigated (DoS mitigation relies on operational controls)
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6.10 Threat 10: Invalid State Transition Injection

Attacker: Malicious Client or Compromised Server Goal: Force session into illegal state (e.g.,
PENDING — EXPIRED while accept in flight, or ACTIVE — PENDING)

Attack Path:

1. Session in PENDING state; responder about to accept

2. Attacker sends forged state transition request (e.g., manual DB update or API call to can-
cel/expire)

3. Session state changed to terminal (EXPIRED/CANCELLED) after accept already processed

4. Attempt to cause accept to be lost or state inconsistency

Affected Phase: Server state machine
Mitigation in Convro:

o Server state machine defines valid transitions explicitly (§2 island-accord-state-machine.md)

o Terminal states (ACTIVE, REJECTED, EXPIRED, CANCELLED, ABORTED) are final; no
transitions allowed back to PENDING (§1.1 island-accord-state-machine.md)

o Accept can only succeed if state is PENDING (§3.2 precondition 4, island-accord-state-
machine.md)

e Atomic transaction: check state — write accept — transition PENDING—ACTIVE; rollback
on any failure (§3.2 effects, island-accord-state-machine.md)

o Any attempt to transition from terminal state rejected with C6P . HANDSHAKE . STATE_VIQOLATION

Residual Risk: None — state machine strictly enforced with atomic operations

Status: Prevented

6.11 Threat 11: Double Accept Concurrency

Attacker: Malicious Responder or Concurrent Bug Goal: Process two accepts for the same session,
potentially with different kc2 values

Attack Path:

1. Responder (or attacker controlling responder) calls accept() twice concurrently with same
sessionld

2. First accept sets acceptBlob and transitions PENDING — ACTIVE

3. Second accept attempts to overwrite acceptBlob or transition again

Affected Phase: Handshake (accept)
Mitigation in Convro:

e Accept is idempotent: if session already ACTIVE and provided kc2 matches stored accept,
return OK; if differs, reject (§6.2 island-accord-state-machine.md)

o acceptBlob is immutable after first write (§4.3 island-accord-state-machine.md)

o Database transaction isolation ensures only one accept can transition PENDING—ACTIVE
(§3.2 atomic transaction, island-accord-state-machine.md)

o Second concurrent accept either: (a) sees state already ACTIVE and follows idempotency
rule, or (b) transaction conflict causes retry/abort

13



Residual Risk: None — idempotency and atomic transitions prevent double accept

Status: Prevented

6.12 Threat 12: Offer Delivery After Terminal State

Attacker: Malicious Server or Race Condition Goal: Deliver offer to responder after session
already transitioned to terminal state (EXPIRED, CANCELLED)

Attack Path:

1. Session created in PENDING; offer deliverable

2. Session expires or initiator cancels — state becomes EXPIRED/CANCELLED
3. Server or WebSocket reconnect delivers stale offer to responder

4. Responder attempts to accept expired/cancelled session

Affected Phase: Message delivery + handshake (accept)
Mitigation in Convro:

o Offer deliverable only when state == PENDING (§4.5 delivery invariant, island-accord-state-
machine.md)

o Terminal states stop delivery immediately (§4.5 island-accord-state-machine.md)

e Accept precondition checks state is PENDING; if terminal, reject with C6P . HANDSHAKE . STATE_VIOLATION
(§3.2 precondition 4, island-accord-state-machine.md)

o Client-side: responder should cache session state and reject accept if local state already
terminal

Residual Risk: None — state checks at accept time prevent processing of stale offers

Status: Prevented

6.13 Threat 13: Message Replay on WS Reconnect

Attacker: Malicious Server or Network Goal: Replay previously delivered message after WebSocket
reconnection

Attack Path:

1. Initiator sends message with counter=>5

2. Server delivers message; responder accepts and marks counter=5 consumed
3. WebSocket disconnects and reconnects

4. Server (or attacker) replays message with counter=>5

Affected Phase: Message transport (DM ratchet)
Mitigation in Convro:

o Receiver maintains consumed counter set per (sessionId, streamId) (§2.1 c6p-replay-and-
skip-window.md)

o Replay detection: if counter already consumed, reject with REPLAY_DUPLICATE_COUNTER (§3.5
cbp-replay-and-skip-window.md)

14



o Consumed state persisted atomically with ratchet state (§6.1 c6p-replay-and-skip-window.md)
o Replay rejected even if AEAD verifies (§3.5 hard rule, c6p-replay-and-skip-window.md)

Residual Risk: None — consumed set prevents replay regardless of transport reconnects

Status: Prevented

6.14 Threat 14: Counter Desync Attack

Attacker: Network or Malicious Server Goal: Cause receiver’s expected counter to desynchronize
by dropping messages selectively

Attack Path:

Sender sends messages counter=1,2,3,4,5

Attacker drops counter=3

Receiver accepts 1,2 (in-order), then receives 4 (out-of-order, within skip-window)
Receiver marks 4 consumed but recv_ expected=3

5. Attacker attempts to inject forged message with counter=3 or cause permanent desync

=

Affected Phase: Message transport (DM ratchet)
Mitigation in Convro:

o Skip-window allows out-of-order acceptance within bounded range (2048 messages) (§6.1
cbp-replay-and-skip-window.md)

o Counter 4 accepted and marked consumed; recv__expected remains at 3 (§3.2 c6p-replay-and-
skip-window.md)

o When counter=3 eventually arrives, it can be accepted (if within window and not yet consumed)

o If counter=3 never arrives and more than 2048 messages progress, counter=3 becomes perma-
nently skipped

e Per-message key derivation is deterministic per counter; missing messages do not break future
messages (§7.2 c6p-replay-and-skip-window.md)

o Bounded skip-window prevents unbounded cache growth (§6.3 c6p-replay-and-skip-window.md)

Residual Risk: Limited — messages can be permanently lost if skipped beyond window; this is
acceptable tradeoff for availability

Status: Mitigated (bounded desync acceptable; integrity maintained)

6.15 Threat 15: Malicious Server Message Reordering

Attacker: Malicious Server Goal: Deliver messages out of order to cause confusion, trigger
skip-window exhaustion, or bypass application-level ordering

Attack Path:

1. Sender sends messages counter=1,2,3,4,5
2. Malicious server reorders: delivers 5,4,3,2,1
3. Receiver accepts all if within skip-window but application logic may assume ordering

15



Affected Phase: Message transport
Mitigation in Convro:

o Protocol allows out-of-order delivery within skip-window by design (§3.2 c6p-replay-and-skip-
window.md)

o Each message independently validated; no dependency on prior messages for decryption (§7.1
cbp-replay-and-skip-window.md)

o Application layer responsible for enforcing ordering if required (e.g., display messages sorted

by counter)
o Extreme reordering (>2048 messages) causes rejection with REPLAY_COUNTER_TOO_FAR (§3.3

cb6p-replay-and-skip-window.md)

Residual Risk: Limited — protocol does not guarantee ordering; application must handle if
required

Status: Out of Scope (ordering is application concern; protocol provides tools via counters)
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7 Non-Goals & Explicit Limitations

7.1 9.1 Compromised Endpoint
Threat: Malicious OS, malware, keylogger, or debugger running on device

Impact: Attacker gains access to all keys stored on device, can decrypt all future messages, can
impersonate user

Mitigation Status: Out of scope for protocol. Rely on:

o Platform security (i0S Secure Enclave, Android StrongBox)
o Biometric/passcode protection

e App sandboxing

o User device hygiene

Note: Forward secrecy protects past messages if keys already deleted, but future messages compro-
mised until device cleaned or keys rotated.

7.2 9.2 Malicious OS / Physical Access

Threat: Attacker with physical access to unlocked device or compromised operating system
Impact: Full access to user’s messages, keys, and account

Mitigation Status: Out of scope. C6P cannot protect against:

o Unlocked device left unattended
o Compromised i0S/Android system
» Rooted/jailbroken devices (optional detection possible)

Recommendation: User education, device lock policies, remote wipe capabilities (application-layer
feature)

7.3 9.3 Side-Channel Attacks

Threat: Timing attacks, power analysis, cache timing, electromagnetic emanation
Impact: Potential key leakage via measurement of execution time or power consumption
Mitigation Status: Partially addressed:

o Constant-time crypto libraries used (libsodium, ring)
» Constant-time comparisons for tags/MAC validation
o Power analysis out of scope (requires hardware-level defenses)

Residual Risk: Advanced physical side-channel attacks not prevented; rely on hardware security
modules for high-value keys if required.
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7.4 9.4 Denial of Service

Threat: Flooding, OTP exhaustion, computational DoS via expensive operations
Impact: Service unavailable to legitimate users

Mitigation Status: Partially addressed:

 Rate limiting (server-side policy)

o OTP reservation TTL (10 minutes)

o Skip-window bounds (2048) prevent unbounded cache growth
o AEAD validation fails fast on invalid tags

Residual Risk: Full DoS prevention out of protocol scope; rely on network-level defenses, CDN,
rate limiting infrastructure.

7.5 9.5 Metadata Leakage

Threat: Traffic analysis reveals communication patterns (who talks to whom, when, frequency)
Impact: Metadata exposes social graph and behavior patterns

Mitigation Status: Minimal in v1:

o Session IDs are random (not derived from user identities)
o Message sizes visible (padding not implemented in v1)
o Timing visible (cover traffic not implemented in v1)

Recommendation: High-threat users should combine C6P with Tor or similar anonymity networks.

Note: C6P focuses on content confidentiality; metadata protection deferred to future versions and
external tools.

7.6 9.6 Quantum Adversaries

Threat: Future quantum computers break X25519 ECDH via Shor’s algorithm (harvest-now-
decrypt-later)

Impact: Encrypted traffic recorded today could be decrypted in future with sufficiently powerful
quantum computer

Mitigation Status: Not addressed in v1. Acknowledged limitation:

e C6P vl is not quantum-safe
o Post-quantum prekeys (hybrid X25519 4+ Kyber) planned for v2
o Key rotation limits exposure window

Residual Risk: High-value targets should assume quantum vulnerability; plan for v2 migration.
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8 Determinism & Fail-Closed Philosophy

8.1 9.5.1 Why Deterministic Nonces Are Safe
C6P uses deterministic nonce derivation, which is secure because:

1. Per-message keys: Every message has unique AEAD key derived via HKDF from chain key
+ counter

2. Injective binding: Nonce derivation binds (session_id, suite_id, message_type,
stream_id, counter) via HKDF-Expand with domain-separated label C6P_NONCE_V1

3. Replay prevention: Consumed counter sets ensure no counter reused within a session/stream

4. No key reuse: The pair (suite_key, nonce) is never reused by construction

Security Property: Even if nonce is deterministic, each message uses a fresh AEAD key. The
security of ChaCha20-Poly1305 depends on unique (key, nonce) pairs, which C6P guarantees via
unique per-message keys.

Benefits of Determinism:

e Test vectors are reproducible across implementations
o No reliance on RNG for nonce generation (reduces attack surface)
e Easier to audit and verify correctness

8.2 9.5.2 Fail-Closed Design Principle
C6P enforces fail-closed behavior at every layer:

Encoding Layer Invalid hex/base64url encoding — immediate rejection with C6P.ENC.* error
code. No “best-effort” parsing.

Cryptographic Layer Signature verification failure, AEAD tag mismatch, transcript mismatch —
immediate abort. No partial session creation.

State Machine Layer Invalid state transition, expired offer, replayed offer — rejection with
C6P .HANDSHAKE.STATE_VIOLATION. No “fixup” attempts.

Ratchet Layer Replayed counter, counter outside skip-window, AEAD open failure — message
rejected, no state advancement. Consumed set unchanged.

Why Fail-Closed?

Security over availability: Better to reject ambiguous input than risk state corruption
Predictable behavior: Deterministic failures enable reliable testing and debugging
Attack detection: Failed validations indicate active attack or serious bug; must be observable
No silent degradation: Partial failures escalate to full failure; prevents attacker from
gradually weakening security

o=

8.3 9.5.3 Unknown Inputs Cause Abort

If any input is unknown, unexpected, or outside spec:
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e Unknown suite_id — C6P.AEAD.UNSUPPORTED_SUITE

e Unknown message_type or stream_id — C6P.WIRE.INVALID_ENVELOPE
e Unknown protocol version — C6P.HANDSHAKE.VERSION_UNSUPPORTED

¢ Malformed encoding — C6P.ENC. *

No Fallbacks: C6P does not attempt to “guess” or “default” unknown values. Unknown inputs
are treated as potential attacks or unacceptable version skew.

8.4 9.5.4 State Never Advances on Failure

Sender Invariant: Send counter incremented only after message sealed and state persisted
atomically.

Receiver Invariant: Counter marked consumed only after AEAD open succeeds and state persisted
atomically.

Server Invariant: Session state transitions only after all validation passes and database transaction
commits.

Crash Safety: If process crashes mid-operation, state remains at last committed checkpoint.
Operations are idempotent where possible.
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9 Conclusion & Security Posture

9.1

10.1 Summary of Security Posture

C6P (Convro 6 Protocol) provides strong end-to-end encrypted messaging within its defined threat
model:

Achieved Security Properties:

Confidentiality: Messages encrypted with per-message AEAD keys; server and network
cannot decrypt

Authentication: Mutual authentication via Ed25519 signatures and bidirectional key confir-
mation

Forward secrecy: Per-message keys provide forward secrecy; compromise of current state
does not reveal past messages

Replay resistance: Handshake and message replay prevented via server uniqueness con-
straints and consumed counter sets

State integrity: Strict state machine enforcement with atomic transitions and fail-closed
validation

Determinism: All cryptographic operations deterministic and reproducible

Threat Coverage:

9.2

Network attackers (passive and active MITM) cannot decrypt or forge messages
Malicious server cannot decrypt messages or violate state machine invariants
Malicious peers cannot replay messages or bypass authentication

OTP scarcity enforced via atomic state transitions

Concurrent operations handled safely via database isolation and idempotency

10.2 Acknowledged Limitations

C6P explicitly does not protect against:

Endpoint compromise (malicious OS, malware, physical access to unlocked device)

Social engineering (user accepts fake identity fingerprint)

Quantum adversaries (post-quantum migration planned for v2)

Full denial-of-service prevention (relies on operational controls)

Metadata analysis beyond protocol-level binding (timing, message sizes, session linkability)

These limitations are inherent to the threat model and do not represent protocol failures.

9.3

10.3 Residual Risks

Within Scope (Acceptable Tradeoffs):

Bounded message loss: Skip-window (2048) means messages more than 2048 ahead of
recv__expected are rejected; acceptable for availability

OTP exhaustion DoS: Short-term OTP pool exhaustion possible despite rate limits;
acceptable as DoS is out of protocol scope
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o Metadata leakage: Session IDs, message sizes, timestamps visible to network/server;
acceptable as focus is content confidentiality

Out of Scope (Acknowledged):

o Quantum attacks on X25519 (harvest-now-decrypt-later threat)
o Platform compromise defeating key storage protections
e Advanced side-channel attacks requiring physical access

9.4 10.4 Conclusion
The C6P protocol is secure within its defined threat model.

The protocol provides strong cryptographic guarantees for confidentiality, authentication, and
integrity of direct messages between devices. The deterministic design, fail-closed validation, and
server state machine enforcement create a robust defense against network attackers, malicious
servers, and malicious peers.

Security properties are achieved without requiring server trust for secrecy, making C6P suitable
for deployment scenarios where server operators are not fully trusted or where defense-in-depth is
required.

For threats outside the protocol’s threat model (endpoint compromise, quantum adversaries, full
DoS prevention), deployments should layer additional controls: platform security features, user
education, operational monitoring, and eventual migration to post-quantum cryptography.

C6P v1 is production-ready for audit and deployment.
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10 Appendix A: Threat Mapping Table

1D Threat Attacker Phase Mitigation Status
1 Replayed Network /Server Handshake  Server uniqueness Prevented
handshake constraint +
offer idempotency
2 Modified offer ~Network/Server =~ Handshake  Ed25519 signature + Prevented
blob transcript binding
3 Sessionld Peer/Server Handshake = UNIQUE database Prevented
collision constraint + 64-bit
random ID
4 Accept replay  Network/Server Handshake  Immutable Prevented
with modified acceptBlob + KC
kc2 verification
5 Cross-device Peer Handshake  Device binding Prevented
accept validation +
transcript check
6 OTP reuse Initiator/Server ~ Handshake  Atomic state Prevented
transitions (RE-
SERVED—PENDING—CONSUMED)
7 OTP race Initiators Prekey fetch  Atomic OTP Prevented
between reservation + DB
initiators isolation
8 OTP replay Initiator Handshake  Expiry check at Prevented
after open() + expired
expiration status
9 OTP prefetch Initiator Prekey fetch 10min TTL + rate Mitigated
hoarding limiting + cleanup
job
10 Invalid state  Client/Server State Explicit valid Prevented
transition machine transitions +
terminal state
enforcement
11 Double accept Responder Handshake  Idempotency + Prevented
concurrency immutable
acceptBlob + atomic
transition
12 Offer delivery  Server/Race Delivery Delivery only when Prevented
after terminal PENDING + state
check at accept
13 Message Server /Network Transport Consumed counter Prevented
replay on set + atomic
reconnect persistence
14 Counter Network /Server Transport Deterministic key Mitigated

desync attack
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1D Threat Attacker Phase Mitigation Status

15 Malicious Server Transport Out-of-order support Out-of-scope
server + app-layer ordering
reordering

24



11 Appendix B: Glossary
AAD (Additional Authenticated Data) 63-byte structure binding protocol version, suite ID,
session binding, stream ID, and counter to ciphertext; authenticated but not encrypted.

AEAD (Authenticated Encryption with Associated Data) Encryption scheme providing
both confidentiality and authenticity; C6P uses ChaCha20-Poly1305.

Chain Key (CK) 32-byte symmetric key updated after each message; used to derive per-message
keys; provides forward secrecy.

Consumed Counter Set Bounded data structure tracking which message counters have been
accepted; prevents replay attacks.

Device ID 16-byte identifier derived from Ed25519 signing public key via SHA-256; uniquely
identifies a device.

DH (Diffie-Hellman) Key exchange using X25519; C6P uses 3DH (three DH operations) or 4DH
(with OTP).

Ephemeral Key (EK) Short-lived X25519 key pair generated per session; provides forward secrecy.

Fail-Closed Design principle: any validation failure causes immediate abort with no partial state
updates.

Identity Key (IK) Long-term key pair; IK_sig (Ed25519 for signatures), IK_dh (X25519 for DH).
Island Accord Authenticated prekey handshake protocol; establishes session keys via 3SDH+OTP.

Key Confirmation (KC) Bidirectional proof that both parties derived the same session keys; uses
HMAC-SHA256 tags (KC1 from initiator, KC2 from responder).

One-Time Prekey (OTP) Single-use X25519 public key providing enhanced forward secrecy;
consumed exactly once via atomic server state transitions.

Root Key 32-byte master secret derived from handshake DH operations; used to derive initial
chain keys.

Session Binding 32-byte value computed as SHA-256 of session metadata (session ID, device IDs);
binds all cryptographic operations to session context.

Signed Prekey (SPK) X25519 public key signed by IK_sig; rotated every 30 days; binds ephemeral
session keys to long-term identity.

Skip-Window Bounded buffer (2048 messages) allowing out-of-order message acceptance without
weakening replay protection.

Stream Unidirectional message flow within session; DM sessions have two streams (i2r: initia-
tor—responder, r2i: responder—initiator).

Transcript Hash SHA-256 hash of canonical handshake parameters; binds offer signature and key
confirmation to exact handshake inputs.
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12 Document Metadata
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